OPENLAB-IMAGE PROCESSING

FREE KNOWLEDGE FOR ALL PEOPLE
 
Trang ChínhPortalCalendarTrợ giúpTìm kiếmThành viênNhómĐăng kýĐăng Nhập

Share | 
 

 Support Vector Machine

Xem chủ đề cũ hơn Xem chủ đề mới hơn Go down 
Tác giảThông điệp
jackauk
Thành viên thường
avatar

Tổng số bài gửi : 51
Điểm danh tiếng : 0
Join date : 16/08/2015
Age : 29
Đến từ : TP Hồ Chí Minh

Bài gửiTiêu đề: Support Vector Machine   Sun Sep 06, 2015 11:05 pm

Máy vectơ hỗ trợ (SVM - viết tắt tên tiếng Anh support vector machine) là một khái niệm trong thống kê và khoa học máy tính cho một tập hợp các phương pháp học có giám sát liên quan đến nhau để phân loại và phân tích hồi quy. SVM dạng chuẩn nhận dữ liệu vào và phân loại chúng vào hai lớp khác nhau. Do đó SVM là một thuật toán phân loại nhị phân. Với một bộ các ví dụ luyện tập thuộc hai thể loại cho trước, thuật toán luyện tập SVM xây dựng một mô hình SVM để phân loại các ví dụ khác vào hai thể loại đó. Một mô hình SVM là một cách biểu diễn các điểm trong không gian và lựa chọn ranh giới giữa hai thể loại sao cho khoảng cách từ các ví dụ luyện tập tới ranh giới là xa nhất có thể. Các ví dụ mới cũng được biểu diễn trong cùng một không gian và được thuật toán dự đoán thuộc một trong hai thể loại tùy vào ví dụ đó nằm ở phía nào của ranh giới.
Tổng quan về máy vectơ hỗ trợ[sửa | sửa mã nguồn]
Một máy vectơ hỗ trợ xây dựng một siêu phẳng hoặc một tập hợp các siêu phẳng trong một không gian nhiều chiều hoặc vô hạn chiều, có thể được sử dụng cho phân loại, hồi quy, hoặc các nhiệm vụ khác. Một cách trực giác, để phân loại tốt nhất thì các siêu phẳng nằm ở càng xa các điểm dữ liệu của tất cả các lớp (gọi là hàm lề) càng tốt, vì nói chung lề càng lớn thì sai số tổng quát hóa của thuật toán phân loại càng bé.
Trong nhiều trường hợp, không thể phân chia các lớp dữ liệu một cách tuyến tính trong một không gian ban đầu được dùng để mô tả một vấn đề. Vì vậy, nhiều khi cần phải ánh xạ các điểm dữ liệu trong không gian ban đầu vào một không gian mới nhiều chiều hơn, để việc phân tách chúng trở nên dễ dàng hơn trong không gian mới. Để việc tính toán được hiệu quả, ánh xạ sử dụng trong thuật toán SVM chỉ đòi hỏi tích vô hướng của các vectơ dữ liệu trong không gian mới có thể được tính dễ dàng từ các tọa độ trong không gian cũ. Tích vô hướng này được xác định bằng một hàm hạt nhân K(x,y) phù hợp.[1] Một siêu phẳng trong không gian mới được định nghĩa là tập hợp các điểm có tích vô hướng với một vectơ cố định trong không gian đó là một hằng số. Vectơ xác định một siêu phẳng sử dụng trong SVM là một tổ hợp tuyến tính của các vectơ dữ liệu luyện tập trong không gian mới với các hệ số αi. Với siêu phẳng lựa chọn như trên, các điểm x trong không gian đặc trưng được ánh xạ vào một siêu mặt phẳng là các điểm thỏa mãn:
Σi αi K(xi,x) = hằng số.
Ghi chú rằng nếu K(x,y) nhận giá trị ngày càng nhỏ khi y xa dần khỏi x thì mỗi số hạng của tổng trên được dùng để đo độ tương tự giữa x với điểm xi tương ứng trong dữ liệu luyện tập. Như vậy, tác dụng của tổng trên chính là so sánh khoảng cách giữa điểm cần dự đoán với các điểm dữ liệu đã biết. Lưu ý là tập hợp các điểm x được ánh xạ vào một siêu phẳng có thể có độ phức tạp tùy ý trong không gian ban đầu, nên có thể phân tách các tập hợp thậm chí không lồi trong không gian ban đầu.
Lịch sử[sửa | sửa mã nguồn]
Thuật toán SVM ban đầu được tìm ra bởi Vladimir N. Vapnik và dạng chuẩn hiện nay sử dụng lề mềm được tìm ra bởi Vapnik và Corinna Cortes năm 1995


Video cực kỳ dễ hiểu về Suport Vector Machine. Minh sẽ đưa lên cơ sở lý thuyết trong nhận dạng sau:





_________________
Em gọi ta khi mùa trăng đã dứt
Nắng nhạt phai, còn thanh xuân qua rồi.
Dĩ vãng êm đềm xin trôi, trôi mãi
Để ta lớn lên, bước về trời xa

Nếu một mai quay về còn gặp lại
Nửa đời thương nhớ, nửa đời vấn vương
Hoa kia xin cài vào miền quá khứ
Để nồng nàn góc phố ta gặp nhau.
Về Đầu Trang Go down
Xem lý lịch thành viên
 
Support Vector Machine
Xem chủ đề cũ hơn Xem chủ đề mới hơn Về Đầu Trang 
Trang 1 trong tổng số 1 trang
 Similar topics
-
» Tỷ lệ vàng
» Happy birthday Rán Towua :)~
» [Showroom]Momi aka Lacie aka Abyss
» Mẫu Giấy khen
» Offshore Support Vessels: A Practical Guide (tài liệu cho Tàu dịch vụ ngoài khơi)

Permissions in this forum:Bạn không có quyền trả lời bài viết
OPENLAB-IMAGE PROCESSING :: KHO TÀI LIỆU :: TÀI LIỆU VỀ NHẬN DẠNG TRONG XỬ LÝ ẢNH-
Chuyển đến